

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

INFORMATION COLLECTION USING HANDHELD
DEVICES IN UNRELIABLE NETWORKING

ENVIRONMENTS

by

Marisol M. Torres

June 2014

Thesis Advisor: Gurminder Singh
Second Reader: Arijit Das

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
INFORMATION COLLECTION USING HANDHELD DEVICES IN
UNRELIABLE NETWORKING ENVIRONMENTS

5. FUNDING NUMBERS

6. AUTHOR(S) Marisol M. Torres
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Information collection is a critical task in a wide range of tactical and strategic military and civilian operations. The
ability to gather accurate information in a timely manner is a difficult task, but sharing that information and making it
accessible in near real-time compounds the challenges. The ability to do all three in an environment where network
connectivity is intermittent or non-existent seemed virtually impossible until recent years.

Network connectivity plays a significant role in how we conduct business. Our requirements to share information do
not change simply because there is little or no existing infrastructure in our area of operations. In fact, information
sharing can prove to be more important in areas where infrastructure is simply nonexistent. It is for this reason that
the Lighthouse suite of applications was conceived.

This research takes a deeper look at specific goals and requirements for information collection using handheld
devices, and identifies a data synchronization algorithm and existing network connectivity technologies that can be
used to implement sharing between handheld devices. The recommendations can be used to enhance information
sharing, promote accuracy of data, and improve the efficacy of information-gathering techniques when implemented
in austere networking environments.

14. SUBJECT TERMS Information Collection, Challenged Networks, Immature Networks,
Unreliable Network Connectivity, Disconnected Networks, Intermittent Network Connectivity, Delay
Tolerance, Wireless Networks, Wi-Fi Direct, Near Field Communication, Direct Bluetooth
Connection, Handheld Devices, Data Sharing, Peer-to-peer Network Database Synchronization

15. NUMBER OF
PAGES

89
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

INFORMATION COLLECTION USING HANDHELD DEVICES IN
UNRELIABLE NETWORKING ENVIRONMENTS

Marisol M. Torres
Captain, United States Army

B.S., Mount Saint Mary College, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2014

Author: Marisol M. Torres

Approved by: Gurminder Singh
Thesis Advisor

Arijit Das
Second Reader

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Information collection is a critical task in a wide range of tactical and strategic military

and civilian operations. The ability to gather accurate information in a timely manner is a

difficult task, but sharing that information and making it accessible in near real-time

compounds the challenges. The ability to do all three in an environment where network

connectivity is intermittent or non-existent seemed virtually impossible until recent years.

Network connectivity plays a significant role in how we conduct business. Our

requirements to share information do not change simply because there is little or no

existing infrastructure in our area of operations. In fact, information sharing can prove to

be more important in areas where infrastructure is simply nonexistent. It is for this reason

that the Lighthouse suite of applications was conceived.

This research takes a deeper look at specific goals and requirements for

information collection using handheld devices, and identifies a data synchronization

algorithm and existing network connectivity technologies that can be used to implement

sharing between handheld devices. The recommendations can be used to enhance

information sharing, promote accuracy of data, and improve the efficacy of information-

gathering techniques when implemented in austere networking environments.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I.	 INTRODUCTION ... 1	
A.	 MOTIVATION ... 2	
B.	 OBJECTIVES ... 3	
C.	 RELEVANCE TO THE DEPARTMENT OF DEFENSE 3	
D.	 THESIS OUTLINE ... 3	

II.	 BACKGROUND ... 5	
A.	 NORMAL DATABASE OPERATIONS .. 5	
B.	 DEGREES OF CONNECTIVITY .. 5	

1.	 Constant Connection .. 6	
2.	 Weak Connection .. 7	
3.	 Intermittent Connection ... 7	

C.	 DIFFERENT MODELS ... 7	
1.	 Thin-Client with Remote Access to Data .. 7	
2.	 Device-to-Master ... 9	
3.	 Publisher-Subscriber .. 11	
4.	 Peer-to-Peer ... 12	
5.	 Ad Hoc Sensors ... 12	

D.	 PREVIOUS SOLUTION .. 13	
1.	 The Field Information Support Tool ... 13	

a.	 System Components ... 15	
b.	 FIST Goals ... 15	

2.	 Lighthouse, Version 1.0 .. 16	
a.	 System Components ... 17	
b.	 Use Cases .. 17	

III.	 LIGHTHOUSE: THE NEXT GENERATION .. 19	
A.	 GOVERNMENT-OFF-THE-SHELF SOLUTION 19	
B.	 DISCONNECTED TOOLS .. 19	

1.	 Interface for Form Creation and Integration 20	
a.	 Separate / Disparate Data .. 20	
b.	 Stand-Alone Tools .. 20	

2.	 Data Sharing without Network Connectivity 21	
a.	 Near Field Communication (NFC) 21	
b.	 Bluetooth .. 23	
c.	 Wi-Fi Direct .. 24	

C.	 DEVICE INDEPENDENCE .. 24	
D.	 PROPOSED CAPABILITIES ... 25	

1.	 Form ... 26	
2.	 Map ... 26	
3.	 Visual .. 27	
4.	 Photo Gallery ... 28	
5.	 Help / Codebook .. 29	
6.	 Other Capabilities ... 29	

a.	 Baseball Card ... 29	

 viii

b.	 New Links ... 30	
c.	 Export Capability ... 31	
d.	 Database Integration .. 31	

IV.	 METHODOLOGY ... 33	
A.	 UPDATE USING FILE EXPORTS .. 33	

1.	 Use Case ... 34	
B.	 DATABASE SYNCHRONIZATION .. 38	

1.	 Data Sharing Algorithm ... 38	
2.	 Receiving Data Algorithm .. 40	
3.	 Algorithm Walk-Thru .. 41	
4.	 Implementation ... 43	

C.	 DATABASE STRUCTURE ... 58	
1.	 Sample Local SQLite Database Tables ... 59	
2.	 Sample Database Creation Script .. 60	
3.	 Chapter Summary .. 61	

V.	 CONCLUSIONS ... 63	
A.	 MAJOR ACHIEVEMENTS .. 63	
B.	 FUTURE WORK .. 63	

1.	 Seamlessness .. 63	
2.	 Connectivity ... 64	
3.	 Off-line Maps ... 64	
4.	 Data Visualization ... 65	
5.	 Device Independence .. 66	

LIST OF REFERENCES ... 69	

INITIAL DISTRIBUTION LIST .. 71	

 ix

LIST OF FIGURES

Figure 1.	 Sample with Central Database Server (after MobiForms 2014) 8	
Figure 2.	 iTunes UML Deployment Diagram (from iTunes 2014a) 10	
Figure 3.	 Typical Publisher / Subscriber System (from Oracle 2014) 11	
Figure 4.	 Peer-to-peer network of mobile devices (after MobiForms 2014) 12	
Figure 5.	 Diagram of FIST Components (from Longley 2010a, 3) 14	
Figure 6.	 Possible Lighthouse “Home” and “Help” Screens .. 26	
Figure 7.	 Possible “Form” and “Map” Screens .. 27	
Figure 8.	 Possible “Visual” and “Photo Gallery” Screens ... 28	
Figure 9.	 Possible “Baseball Card” View (after Vectorcharacters 2014) 30	
Figure 10.	 Sharing Data Flowchart .. 42	
Figure 11.	 Receiving Data Flowchart ... 43	
Figure 12.	 Start of Program Action Sequence of NPS5 ... 44	
Figure 13.	 Steps 3 and 4 of NPS5 .. 45	
Figure 14.	 Final Step of NPS5 .. 46	
Figure 15.	 Start of Program Action Sequence for NPS1 .. 47	
Figure 16.	 Screens 3 and 4 of NPS1 ... 48	
Figure 17.	 NPS5 screen after receiving data from NPS1 ... 49	
Figure 18.	 NPS5 sharing data with Galaxy Nexus ... 50	
Figure 19.	 NPS5 receiving data from Galaxy Nexus ... 50	
Figure 20.	 NPS5 after inserting data from Galaxy Nexus .. 51	
Figure 21.	 Galaxy Nexus sharing data with NPS5 ... 51	
Figure 22.	 Galaxy Nexus after sharing data with NPS5 ... 52	
Figure 23.	 Galaxy Nexus sharing data with NPS1 ... 53	
Figure 24.	 Galaxy Nexus after sending data to NPS1 .. 53	
Figure 25.	 Galaxy Nexus after receiving data from NPS1 ... 54	
Figure 26.	 NPS1 receiving data from Galaxy Nexus ... 54	
Figure 27.	 NPS1 sending data to Galaxy Nexus .. 55	
Figure 28.	 NPS1 after sharing data with Galaxy Nexus ... 55	
Figure 29.	 NPS5 Database Records ... 56	
Figure 30.	 NPS1 Database Records ... 57	
Figure 31.	 Galaxy Nexus Database Records .. 57	
Figure 32.	 Sample SQLite Data Structure .. 58	
Figure 33.	 Sample Map View Using Leaflet (from Leaflet 2014) 65	
Figure 34.	 Sample Link and Tree Diagram (from MindFusion 2014) 66	

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1.	 List of Devices Tested .. 44	
Table 2.	 Emp Table ... 59	
Table 3.	 Sample Person Table ... 59	
Table 4.	 Sample Person Data Table .. 60	
Table 5.	 Sample Photo Table .. 60	

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AOR area of operation

API application programming interface

ATM automated teller machine

ATMC automated teller machine controller

BLOB binary large object

C-IED counter-IED operations

CIDNE Combined Information Data Network Exchange

CN counter-narcotic

COIN counterinsurgency operations

CORE Common Operational Research Environment

COTS Commercial-off-the-shelf

DOD Department of Defense

DSL digital subscriber line

FIST Field Information Support Tool

GPS Global Positioning System

HA/DR humanitarian assistance and disaster response

HTS Human Terrain System

IED improvised explosive device

ISVG International Studies of Violent Groups

JLOC joint logistics operations center

JMS Java Message System

JUNG Java Universal Network/Graph Framework

KTG Kestral Technology Group

MILOB military observer

NATO North Atlantic Treaty Organization

 xiv

NFC near field communication

NPS Naval Postgraduate School

ODK Open Data Kit

ORA Organizational Risk Analyzer

OS operating system

PS personal computer

RF radio frequency

RFID radio frequency identification

SDK software development kit

SQL structured query language

UML unified modeling language

 xv

ACKNOWLEDGMENTS

First, I want to thank my family. Having your love and support made all the

difference in the world, and I could never thank you enough. To my son Samuel who has

had to endure many years of separation because of my military service, I understand that

these times apart were difficult. I am proud of the young man you have become despite

those difficulties. To my love, Jamar, thank you for helping me through the daily grind,

countless hours of proofreading, exam preparation, as well as home cooked meals when I

found myself stretched thin. Thank you to my sisters, Jake and Bren, for the late night

phone calls and text messages. Those little pep talks were much needed to maintain the

motivation required to complete this task in conjunction with the loss in the family.

Thanks to my fellow students, specifically in Networks and Mobility, for the many ideas

and approaches to problem solving. Thanks to Chuck Casey for your help in the last few

weeks of prototype development. Finally, I would like to thank my thesis advisors for

continuing to push me to complete tasks in support of this project, ensuring that I had

access to everything I needed to make this project a success. Your guidance was critical

to completion of this project.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The Common Operational Research Environment (CORE) Lab at the Naval

Postgraduate School (NPS) developed the Lighthouse project that allows intelligence

analysts and tactical operators to visualize the battlefield by providing a map of the

human terrain (Longley 2010a, 1). The human terrain system is a military intelligence

program used to better understand the local population (U.S. Army Human Terrain

System 2014). Understanding the human terrain takes into account sociology, linguistics,

political science, anthropology, and other social sciences (Wikipedia 2014a).

Lighthouse was developed at NPS by two students and has been adapted and

implemented in several use cases (Honeggar 2014). The inspiration for the project came

from difficulties faced in data collection and analysis problems encountered in Iraq and

Afghanistan. It is typical of information collectors to gather large amounts of data during

normal operations. While the services were able to capture vast amounts of data, much of

the information was unstructured text or in written reports. This information overload

made content organization and management difficult. Oftentimes, information was not

exploited because of time constraints. Lighthouse is designed to capture structured data in

the field for rapid exploitation by analysts while enabling powerful analytical

methodologies to be applied against the data to reduce the uncertainty involved in

decision making (Honeggar 2014). Lighthouse exploits the advanced capabilities of

computer and mobile technology to improve the process and reduce the time and effort

required for data collection and analysis.

Today’s smartphones and tablets afford incredible storage and processing

capabilities. The various applications that make up Lighthouse have enhanced collection

methods by enabling personnel to gather pertinent information using predefined forms

stored on mobile phones. The data collected is stored on the device and can be sent to an

email address or uploaded to a website. Other tools within the Lighthouse project are

used to aggregate the data in order to provide more information to intelligence analysts.

 2

This research analyzes the current Android-based Lighthouse suite of applications

that focus on data collection tools currently employed by the system. It determines the

requirements for implementing an improved mobile application for data collection. These

guidelines would help in creating an improved application that can be deployed on

virtually any mobile device platform, as well as most web browsers on any computer

operating system. Using popular, open-source software development kits (SDK) and

application programming interfaces (API), the prototype can be developed to detect the

type of device on which it is running and take advantage of additional screen real estate,

processing capabilities of larger devices, or computer processors.

A. MOTIVATION

Lighthouse is used by several government agencies to improve data collection and

analysis processes. A current limitation is that Lighthouse currently requires a constant

broadband connection to upload data. This connection is often not available due to

geography and used too much battery power.

Another limitation is that special equipment is required for information to be

properly shared in those austere networking environments. Wave radios are one means of

gaining the required network access for collectors to upload their data. Persistent

Systems1 is one company that provides this type of equipment but each radio can cost up

to $5,000 per device. Depending on how critical the information being collected is, this

may be a small price to pay.

Mobile devices, however, have sensors that could possibly remove the

requirement for wave radios or other equipment. This research would lead to an

improvement in the functionality of the overall system as well as a cost savings by

offering a solution that removes the requirement for specialized equipment.

1 Persistent Systems offers a Wave Radio product line that has mostly been used by government

entities, but has expanded to industrial companies. For more information, visit www.persistentsystems.com.

 3

B. OBJECTIVES

One capability that will make Lighthouse more useful is to make it more reliable

in various wireless networking conditions that occur in real-life, without the requirement

of specialized military equipment. The ultimate goal of this thesis is to enable database

synchronization between data collectors in remote environments without Internet or

Broadband connectivity. Sharing data in those remote environments can enhance data

collection and analysis operations

C. RELEVANCE TO THE DEPARTMENT OF DEFENSE

The original inspiration for development of Lighthouse was to streamline and

improve data collection and analysis specifically in austere environments such as the

areas of operation (AOR) encompassed by the Global War on Terror. Lighthouse was

used in remote regions of Iraq and Afghanistan with special military equipment because

of the lack of network infrastructure. This enabled sharing of data from the remote sites

to the rear headquarters. The insights gained through this research are impactful in

various areas throughout the DOD to include improved collection capabilities without the

use of specialized equipment, which also results in a significant cost savings to American

taxpayers.

D. THESIS OUTLINE

Chapter I introduced the research topic and objectives. Chapter II describes the

evolution of Lighthouse from Field Information Support Tool (FIST) into its current

form. It explains the motivation and goals hoped to be accomplished. It also discusses

some of the shortcomings of the current implementation of Lighthouse. Chapter III

describes several approaches that could be used to improve current operations. Chapter

IV describes the methodology, results and the challenges faced in developing the solution

and issues with database synchronization, especially when in a disconnected

environment. Chapter V summarizes this research and future work to be conducted.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This chapter discusses some background information that is helpful for readers

prior to moving forward. Familiarity with database operations is not critical, as most of

the difficulties involved in database sharing and synchronization are fairly simple

concepts to understand. Additionally, levels of network connectivity and the types of

applications recommended based on connectivity is explained within this chapter.

Finally, the some research on the FIST is detailed to introduce the origins of Lighthouse

to provide readers with the proper frame of reference.

A. NORMAL DATABASE OPERATIONS

The vast majority of current database systems employ client-server architectures,

requiring a connection to a main database stored on a server. The abrupt spike in mobile

applications and mobile devices in general created a requirement for a closer look into

how database operations in the mobile realm differs from previous standards of database

operations. Since mobile device capabilities have increased so dramatically, users expect

the same kind of growth in their ability to access pertinent data. For example, users were

once satisfied with their ability to access their bank account balances by driving to the

nearest automated teller machine (ATM). However, these days, users who cannot obtain

this information via the Internet on a personal computer (PC) or mobile phone would see

this as a serious limitation and would likely switch to a bank that offers this convenience.

B. DEGREES OF CONNECTIVITY

At the advent of the Internet, protocols were developed to deal with many issues

such as connectivity and data-replication to ensure accessibility and reliability of data, as

well as synchronization to establish rules to ensure accuracy of data when seemingly

simultaneous updates take effect. For example, the first ATM did not disperse cash,

rather only received deposits. As their capabilities and popularity increased, ATM

machines could be connected via a dial-up connection, digital subscriber line (DSL) or

ATM controller (ATMC) (Wikipedia 2014b). A husband and wife accessing the same

account via different ATMs at the same time could cause the data to become out of sync

 6

with the main account database. Banks had to implement procedures to ensure that there

were no errors by replicating the account at the start of the transaction and verifying

whether there was a change in that data prior to making an actual change to the database.

A slow ATM connection could mean several changes to the account prior to

completion of a single transaction. This is a well-known race-condition problem solved

many years ago in the days of mainframe servers. It goes without saying that network

connectivity is a critical factor for access to data, as well as reliability of that data. Yet,

we can also see that certain types of operations can tolerate different degrees of

connectivity. The biggest challenge to connectivity, especially in mobile settings, is that

one cannot guarantee connectivity at all times, and a drop in connection can cause data

synchronization issues that must be handled.

The degree to which a device must remain connected has a significant impact on

the flexibility and usability of the device. Maintaining “constant” connections to the main

database can become extremely expensive and cumbersome, and given the current state-

of -the-art of deployment of mobile networks, it cannot be taken for granted.

1. Constant Connection

Mobile applications that require constant connectivity to a database or other

server can be rendered useless if a connection is unavailable. As a result, that application

becomes useless to the device user since the application will simply not function properly

without connectivity. For this reason, developers must be careful to prevent making

connectivity a constant requirement. It may be appropriate in some cases, but for many

applications, constant connectivity is not truly required.

Another challenge with the requirement for a constant connection is the fact that

service interruptions cannot always be avoided or predicted in advance. So, developers

must ensure they account for disruption at every stage of any transaction. They must deal

with actions that must occur after connectivity is re-established in order to correct any

potential discrepancies caused by the interruption (Terry 2008).

 7

2. Weak Connection

Weakly connected systems can communicate through low-bandwidth or high

latency connections. However, there can be a severe impact if connection drops during

transaction. The ideal algorithms for this environment must be conservative. The

algorithm introduced in this thesis can be used in this environment because it avoids

having unnecessary re-transmissions.

3. Intermittent Connection

An intermittently connected system takes into account or expects periods during

which it cannot communicate. The major difference between this and weakly connected

systems is that applications designed for intermittently connected systems take into

account the fact that connectivity is not guaranteed (Terry 2008). This means that the

applications attempt to gather and hold transactions until the next connection is made. In

order to ensure that transactions are not lost in the event of a connection dying in the

middle of a transaction or prior to completion of waiting transactions, the application do

not totally remove transactions that were recently completed. Rather, upon re-connection,

the application verifies that the previous transactions were successful prior to considering

the transaction complete, and removing them from the pending transactions queue.

C. DIFFERENT MODELS

Various models have been developed which take into account the degree of

connectivity and other requirements of the application involved. As mentioned

previously, a disruption in connectivity can have significant impact on the consistency of

data. This section will detail the requirements for replication of data in some common

models in use today.

1. Thin-Client with Remote Access to Data

One of the predominant models used is storing data on a server that will be

accessed by mobile devices. Figure 1 is the common architecture employed by

developers and providers to allow their mobile clients access to centralized data. It

depicts three different types of mobile devices that connect wirelessly to a database

 8

server. The actual backend database is not important to the mobile clients. They simply

want to be able to access their data. The mobile devices do not handle sharing content

either. In fact, neither is concerned with any connection other than its own (Long 2011).

Figure 1. Sample with Central Database Server (after MobiForms 2014)

In implementations where there is no sync buffer (or replica) residing on the local

device, the application will not be able to run because it cannot locate the data required.

Other implementations employ a buffer that can cache some data locally. After an initial

connection between the mobile device and the remote sync buffer, the device creates a

local replica. This prevents the application from failing to function due to lack of wireless

connectivity (Terry 2008). As long as a connection exists, the local information can

remain in sync with the remote data. In case of disconnection, requests for data will

access the local data. If these devices require the ability to modify the remote database,

the devices make modifications to the local buffer and post updates to the remote server

when a connection to the remote data server becomes available. Mobile devices have

limited battery life, so a constant connection can consume too much power, rendering the

device useless in environments where recharging a battery can be difficult. The local sync

 9

buffer enhances power saving by only requiring a connection when an update must be

posted, or the mobile device user requests updates from the database (Nori 2007).

2. Device-to-Master

In many cases, mobile devices are used for functions that require data from a

master database or server to be replicated on the local device itself. One common

example is an iPod or iPad, but the same applies to other brands of mp3 players and

tablets. These mobile devices range in size or capacity. Users have the ability to modify

the contents of their iPod. They can do so without having to re-purchase content

previously purchased. Today, they might load a movie on their device and decide next

week to put more music on the device instead. This flexibility is one of the features that

make these devices attractive to users. If they did not have the ability to modify the

content, users would not feel they are worth the cost.

Figure 2 provides a visual depiction of this architecture used by iTunes. This is

likely most familiar example of the device-to-master model, yet media services are not

the only service requiring replication of data. Other uses for this type of system are

management of contacts and electronic mail. While the architecture may appear to be the

same as the previous description, their behavior is very different. The major difference is

that thin-client systems do not necessarily require mobile devices to store or replicate any

data (Terry 2008). Those devices simply access remote sites and display information the

user wants to see. They do not require the device to actually store any of the information

accessed. This architecture, however, requires that some amount of data is stored on the

mobile device from the master.

In this model, one device is the “master” device. This means that one device acts

as the authority or manager. Oftentimes, when synchronization occurs, it must occur

between one device and its master. It is not often that updates are done between more

than two devices at a time. If there are multiple devices that must synchronize, they do so

by taking turns, synchronizing with the master in a pairwise fashion (Nori, 2007).

 10

Figure 2. iTunes UML Deployment Diagram (from iTunes 2014a)

Sticking with the music example, a user would connect their iPod to their

computer. The computer may or may not have the entire user’s content stored locally. So,

that computer would connect to the Internet to access their service provider. In the case of

an iPod, that provider would be Apple's iTunes Store. The iTunes Store maintains the

user's account, tracking any purchases and content owned or authorized to be loaded onto

the user's device (iTunes 2014b). Users are given the opportunity to reload their devices

at will. Also, they can synchronize purchases made by the same user from different

devices.

Proper management of user content is critical for providers to maintain loyal

customers. If users start to experience diminished service because of the providers’

practices, the likelihood that those users will seek more reliable service increases. No

user wants to log in one day and see their entire music library has disappeared.

Additionally, users want their experience to be enhanced as much as possible. Therefore,

the simpler it is for them to perform common tasks without experiencing errors, the

better. For this reason, providers attempt to make common functions simple, or

automatic. They allow users to perform many tasks in background processes so that users

 11

need not be inconvenienced. These principles apply to virtually all user content, not just

music.

3. Publisher-Subscriber

Publisher-subscriber systems are defined by their behavior. Publishers publish bits

of information that are broadcasted to their subscribers. Therefore, subscribers subscribe

to receive specific types of information from specific publishers. Either party can be

mobile or fixed, wireless or wired devices (Terry 2008).

Two simple examples of this type of system are sports or financial updates. Sports

fans might subscribe to receive scores or other information about their favorite team from

a specific team or sports channel. Stock market investors may wish to receive periodic

updates from their investment firms, financial institution or other provider. Weather, local

news and traffic alerts are other forms of publisher-subscriber systems that are extremely

popular for mobile subscribers using phones, smart watches, GPS, or satellite radios.

Figure 3 shows a typical publisher/subscriber system. This case specifically

depicts the Java Message System, a Publisher/Subscriber system that is explained in

greater detail at either Oracle's JMS site (Oracle 2014) or the JMS Wikipedia page

(Wikipedia 2014c). Client 1 is the publisher of a topic that Clients 2 and 3 have both

subscribed. Upon publishing of the content, the topic is delivered to both clients.

Figure 3. Typical Publisher / Subscriber System (from Oracle 2014)

 12

4. Peer-to-Peer

In true peer-to-peer systems, no device acts as the master. Peers can connect to

and update one-another locally. They need not be connected through a central server or

even have Internet access. This type of system is ideal in a weak, intermittently connected

or disconnected environment. This is the major advantage of this type of system;

however, synchronization of data could be an issue if developers are not careful about

decentralized conflict resolution (Terry 2008).

Figure 4 depicts a peer-to-peer local network where mobile devices share

information in their databases with one another. The database can either be a distributed

database where each device holds different portions of the entire database. It can also

represent a system that starts with one database that is replicated on each mobile device

and updates are replicated to the other devices as needed.

Figure 4. Peer-to-peer network of mobile devices (after MobiForms 2014)

5. Ad Hoc Sensors

The final model we discuss is Ad Hoc Sensors. Sensor networks are mesh

networks comprised of nodes that gather certain information or data. For example, one

 13

might have a network of cameras with motion sensors that start recording when the

device senses motion. Each node has wireless connections between them and may share

data between each device on the mesh network. Another example could be temperature

sensors connected to one another wirelessly, ultimately, providing the information to a

PC. These devices could be used as an advanced warning system for a severe weather or

volcano eruptions. Motion sensors with cameras attached could be integrated into a mesh

network as a wireless fence and detect a perimeter breach, activating the camera to take

images. The captured images can be sent to a PC on which a person would verify whether

the breach was made by a person, animal or strong gust of wind.

D. PREVIOUS SOLUTION

Commercial-off-the-shelf (COTS) solutions to solve technical problems within

the military are commonplace. The military procurement system can take several years

and billions of dollars to develop and implement specific military equipment needed for a

specific mission. Making slight modifications to commercial solutions is one method of

significantly reducing taxpayer costs.

FIST is a COTS system comprised of commercially available smartphones,

customized software, and a commercial backend or portal for information management.

(Longley 2010a) The system was used to enable information collection in remote

environments using commercial smartphones, right out of the box. This enhanced

collection efforts by simply making it easier to gather pertinent information, thereby

increasing the number of reports collected. This increase required more robust means of

intelligence analysis, since the speed of collection was so significantly improved.

1. The Field Information Support Tool

The Field Information Support Tool (FIST) started out as a project to integrate

cellular technology into the Army’s tactical radio frequency (RF) networks. Eventually, it

grew into a means of gathering information using a smartphone application and sharing

that information more readily, in any environment (Longley 2010a). It was an entire suite

 14

of commercial capabilities that was used to improve intelligence operations. It enabled

intelligence operators to collect, save and forward reports more easily, and allowed

analysts to view and conduct their analysis in a more timely manner.

Some areas in which FIST has proven its usefulness include military

counterinsurgency and counter-IED operations, humanitarian assistance and disaster

recovery operations, anti-gang as well as anti-drug operations (Longley 2010a). Figure 5

shows a diagram of FIST Components. FIST incorporates a method for collection of data,

transferring that data to a central server where intelligence analysts could conduct

geospatial, link, temporal, and social network analysis, and information exchange with

external data to include the Combined Information Data Network Exchange (CIDNE)

and the International Studies of Violent Groups (ISVG).

Figure 5. Diagram of FIST Components (from Longley 2010a, 3)

 15

a. System Components

FIST consisted of several components known as Collect, FusionPortal and

FusionView.

(1) Collect was an Android-based application used to collect data in the field

and transfer data the central database. It used forms and a “store and forward” method of

information delivery. Information was collected in very remote, poorly connected

environments using smartphones. In the event that network connectivity was dropped,

reports were stored locally and sent upon re-establishment of connectivity.

(2) FusionView was a system designed by Kestral Technology Group (KTG)

in conjunction with the Naval Postgraduate School to aggregate data collected. It

provided a means of data visualization, asset tracking, dynamic report updating, alerts

and alarms that could be viewed on laptops, handhelds or network clusters (Longley

2010a, 8).

(3) The FusionPortal, also designed by KTG, provided a means for

integration with commercial software for further analysis. It was a web-based

management system that worked with: UCINET, a social network and cultural domain

analysis tool developed by Analytic Technologies; Pajek, another social network analysis

program that provides visualization and analysis that compliments UCINET; the

Organizational Risk Analyzer (ORA), is a network assessment tool developed at

Carnegie Mellon that examines changes in networks over time, and identifies key players

and vulnerabilities; ArcInfo, a geospatial analysis tool widely used throughout the

Department of Defense (DOD) (Longley 2010a, 13). The system also allowed for simple

integration with the Worldwide Civil Information Database, the International Studies of

Violent Groups and the Combined Information Data Network Exchange (CIDNE)

(Longley 2010b).

b. FIST Goals

The main reason for development of a “new” system or adopting a new way of

doing business is generally for a perceived improvement or savings in resources and/or

time. FIST was able to accomplish various improvements.

 16

(1) Rapid prototyping was one of the reasons for choosing to go with COTS

equipment rather than purpose-built equipment catered to the army for a specific need.

The COTS approach has obvious advantages. The main savings was in the cost and time

it normally takes to develop a military or government hardware solution. By customizing

some of the existing smartphone applications instead of developing a military

smartphone, development costs were significantly reduced. This allows for rapid

adaptation and testing of commercial smartphone applications (Longley 2010a).

(2) Ease of training was another critical reason for adapting FIST. Many

military solutions involve time and cost intensive training and maintenance modules.

Since smartphones have become ubiquitous and users are already familiar with

smartphone usage in their personal lives, training operators to use a smartphone form is a

fairly trivial task. Virtually no training has to happen for an operator or information

gatherer to be able to use a form based application. The most difficult part of FIST

seemed to be training a “form manager” to create the different forms to be used for

gathering the critical information.

(3) Improved data collection and analysis was also accomplished by enabling

the collected information to be shared easily. That rapid sharing cut down the overall

analysis time, simply by allowing the analysts to obtain the information collected more

quickly than usual. The application also enabled the data to be stored or exported in

several different formats. This automated conversion made it easier for intelligence

analysts to use other commercial analysis tools in their analysis (Longley 2010a).

2. Lighthouse, Version 1.0

As previously stated, the original concept resulted in the creation of FIST. As the

tool became more popular, capabilities expanded and other tools were integrated into the

system, it became more commonly known as the Lighthouse Project. It can be thought of

as a living and breathing system, as other tools are constantly being researched and

integrated into the system as needed.

 17

a. System Components

(1) Open Data Kit (ODK) is a free, open-source data collection tool-kit that

was developed by the University of Washington's Department of Computer Science and

Engineering (ODK 2014a). It enables organizations to create, implement and manage

their very own mobile data collection systems. Using the tools within ODK, an

organization can build their own forms that are loaded onto smartphones or other mobile

devices. Once loaded, that device can be used to collect virtually any type of data in the

field, including location information, audio-visual, photos, barcodes, or just old-fashioned

text data. Of course, none of this is extremely useful without the aggregation tool that is

also included. According to their website, it uses Google's infrastructure and local servers

with MySQL and PostgreSQL on the backend (ODK 2014b).

(2) Google Fusion Tables are used to do basic link analysis and create line,

bar and pie graphs (Longley 2012a). The data can be exported into comma-separated

values file format. These visual representations are sent to remote data collectors and

decision makers.

(3) Organizational Risk Analyzer (ORA) remains a large part of Lighthouse.

It has powerful, dynamic network analysis capabilities based on the specific data that is

uploaded to the server. According to the Lighthouse training website, “

ORA’s approach is the idea of a meta-matrix of networks that not only
includes social networks but knowledge networks (who knows what),
information networks (what ideas are related to what), assignment
networks (who is doing what), need networks (what knowledge is needed
to do the task) and so on. (Longley 2012b)

The ability to export the information into various file formats makes it easier to

move information into the different tools and obtain the required data analysis.

b. Use Cases

(1) Law Enforcement Agencies have been using Lighthouse tools for counter-

gang and counter-drug operations. Specific information about known and suspected drug

dealers or gang members enables officers to perform social network analysis that has

proven invaluable to combat these well organized criminal organizations. Not only is the

 18

information viewable on a map in order to overlay different events and people, but it is

also able to look deeper and create possible links for officers to investigate further.

(2) Humanitarian Assistance and Disaster Recovery operations can be

significantly enhanced using Lighthouse. In fact, it was used to collect survey

information following the earthquake in Haiti, by a team from the University of Central

Florida Institute of Simulation and Technology.

(3) Counterinsurgency and counter-IED operations are two areas where the

urgency of information collection cannot be overstated. The most recent information

tends to be the most critical, and sharing this information among collectors is also critical.

Using social network analysis tools and modifying the type of information gathered,

counter-IED operations are tremendously enhanced. Intelligence personnel can now

analyze component similarities, attributes and other characteristics that can shed some

light on the various bomb-making networks in various regions of the world.

 19

III. LIGHTHOUSE: THE NEXT GENERATION

A. GOVERNMENT-OFF-THE-SHELF SOLUTION

Government-off-the-shelf (GOTS) systems are generally COTS systems that are

created, modified, developed and owned by the government. Usually these tools are

developed by the technical staff of government agencies with a requirement to fill. These

systems can often be shared between different government agencies without additional

costs involved. This is usually a more inexpensive approach to fulfilling a requirement

than contracting out a job. Also, using open-sourced programming tools can help

facilitate programming and development needs. Catering open source programs to suit

the needs of Lighthouse users could streamline the tool rather effectively. The CORE Lab

created a working group of Lighthouse users to determine what improvements should be

made to the current system.2 A GOTS solution might be something to consider. This

chapter describes many of the ideas discussed during the working group discussions to

enhance Lighthouse.

B. DISCONNECTED TOOLS

In its current form, Lighthouse has several disjointed tools that are used for one

main purpose. That is, to enhance data collection and intelligence analysis efforts,

especially in austere environments (Longley 2010a, 1).

When using the current system, users cannot help but notice that the

environments, or graphical user interfaces used, vary from one function to another. In

fact, users cannot easily switch between the different missions or tools within Lighthouse.

Each tool behaves differently from the other since they were all created by different

companies and with different goals in mind. With the working group's goals in mind, and

recognizing that many open-source tools already exist that can enhance operations, there

is no need to totally re-invent the wheel. Many of these tools can be combined into an

2 Members of the Lighthouse working group: MAJ Sam Kemokai (USA, SF), CW4 Chad Machiela
(USA, SF), Ms. Linel McCray (Monterey County Health Department), and Massachusetts State Trooper
Stephen Gregorcyk

 20

updated version of Lighthouse that would give the system the look and feel of an

integrated system, rather than the disjointed system that is currently in use.

1. Interface for Form Creation and Integration

One of the major functions of Lighthouse is the ability to create forms based on

an agency's needs. Each mission would typically require a different form to collect the

desired information pertinent to the mission. This is an extremely powerful function. The

original system used Zerion’s iFormbuilder to view, sort filter and export data for

analysis (Longley 2011). By 2012, it transitioned to ODK. However, there are two

fundamental flaws inherent in the way this tool is currently used.

a. Separate / Disparate Data

One challenge is that each mission is separate. This means that the database

created by a specific form is for a specific purpose. This data is held totally separate from

other databases on the same device. Since these forms create different databases,

comparing the information gathered on different forms is not a trivial task, although not

impossible. This also makes it difficult to make even modest adjustments such as adding

a variable. Comparing data from the two databases simply cannot be done easily on the

mobile device unless the data is combined into the same, shared database. Every interface

is designed for a specific mission and integrating data between the different forms is not

part of the current system design. Comparisons can be done, but it requires a third

interface. This type of disjointedness is not considered a positive feature.

b. Stand-Alone Tools

Another challenge is that because each tool within the Lighthouse Project is an

actual stand-alone tool, each has a different look and feel. Normally, systems are

designed with consistency in mind. The look and feel of a system could make or break

the system. Users prefer when different screens of a specific system look and feel the

same and natural to the task being performed. That is, buttons and background colors,

layout and other characteristics should look and behave the same. This would make it

easier for users of one tool within Lighthouse to feel comfortable with other tools in

 21

Lighthouse. Unfortunately, since it is a set of tools from different manufacturers and

developers, each tool behaves differently and interoperability can be challenging.

Additionally, some tools perform similar functions but provide results in different file

formats. One tool that can convert into the desired format would be the ideal solution and

prevent overlapping capabilities.

2. Data Sharing without Network Connectivity

Under normal or ideal conditions, users can access nearly anything they desire as

long as they have access to the Internet. Unfortunately, connectivity varies greatly from

one location to the next, especially in environments in which Lighthouse is likely to be

used. What happens when network connectivity cannot be taken for granted?

Lighthouse currently functions relatively simply with devices purchased through

normal commercial mobile telephone retail providers. Non-sensitive data can pass

through indigenous 2-4G networks or Wi-Fi hotspots if available. However, remote

locations with limited infrastructure may require special equipment obtained through

military contracts or other special processes. Without special equipment or additional

infrastructure providing the much-needed connectivity, although collectors can continue

to gather information, there is no means of sharing that data. Adding any one of the

following communications capabilities would allow for collectors to share their

information and render special equipment unnecessary, saving taxpayers the cost of that

special equipment. The requirement for commercial or military grade data transfer

methods depend on user requirements and sensitivity of data being collected.

a. Near Field Communication (NFC)

Near field communications is a method of communications that allows transfer of

information between mobile devices without the use of wires (NFC Forum 2014). This is

done by placing the devices in very close proximity, such as touching or within three

inches. Generally, companies implement this through proprietary protocols, suited their

own purposes, making it difficult for transfer between devices made by different

manufacturers. There are several modes in which NFC is implemented in order to support

various functions. The NFC Forum was established to standardize protocols to make

 22

"life easier and more convenient for consumers around the world by
making it simpler to make transactions, exchange digital content, and
connect electronic devices with a touch. NFC is compatible with
hundreds of millions of contactless cards and readers already deployed
worldwide." (NFC Forum 2014)

There are several operating modes which NFC-enabled devices are able to

support.

(1) Card Emulation Mode allows NFC enabled devices to interact with

external readers by simulating smart cards. This enables users to make purchases and

other transactions with a simple touch.

Lighthouse collectors could use this technology to provision mission specific

information in their devices with little to no effort, since this capability is already

integrated into Android devices. To do so, they would simply modify the settings on their

devices at the time they wish to share information and enable NFC. Then they would

select the file they wish to share. Finally, they would touch each device that needs the

information.

So, a team leader receives word of a short notice mission and downloads the

mission pack prior to the start of the mission. The mission pack contains all of the

relevant information / database for the area of operation. The team of collectors would

not have to wait for every collector to download the relevant data. Rather, that time could

be used to perform other essential pre-combat checks. Since using NFC and Beam is so

simple, the team leader can now touch each team member's device, providing them with

the relevant database information. Additionally, in other operations that are less

dangerous, collectors can share their updates with one another when they meet for lunch,

for example, ensuring that every team member has the most updated information.

To use this capability with Lighthouse could be beneficial, but does not really do

enough to enhance Lighthouse capabilities. While this capability may be nice to have,

having to be within such close proximity is extremely limiting.

(2) Peer-to-Peer Mode is used for two-way sharing of information. It uses the

ISO/IEC 18092 standard and is based on the forum’s Logical Link Control Protocol

 23

Specification (NFC Forum 2014). It can be used for devices to exchange photos, business

cards, and even Bluetooth or Wi-Fi parameters.

This could benefit Lighthouse by making it easier to share connection information

prior to the start of a mission. Collectors would touch devices in order to establish a list

of devices to which connections are allowed, essentially creating an access list. By doing

this, devices could automatically connect to “allowed” devices and automatically decline

connections to devices not on the access list. These functions could happen in the

background, enabling the data collector to continue gathering information rather than

stopping collection efforts to verify a device or establish connectivity in the field.

(3) Reader/Writer Mode allows enabled devices to read information stored in

NFC tags that are embedded on posters or other marketing displays. This mode is often

used for updating frequent flyer miles or tapping to obtain special offers. It is compliant

with NFC-A, NFC-B and NFC-F schemes (NFC Forum 2014).

The use of this mode in Lighthouse would be extremely limited. It could prove

beneficial for inventory tracking and surveys, but is not a capability normally associated

with information collection with respect to social networking.

b. Bluetooth

Bluetooth technology is another wireless standard for connecting to external

devices. The major difference between Bluetooth and NFC is the range for Bluetooth is

much greater. Rather than being only inches apart, Bluetooth devices can connect at

distances up to 100 meters (Bluetooth 2014). Having the ability to share information

between data collectors would prove to be a significant improvement to Lighthouse. This

would mean that the information collected could be automatically distributed to nearby

devices rather simply. These local updates would occur much more quickly than having

each collector send information to the central server and downloading any changes. Data

synchronization would be improved significantly using the algorithm described in the

next chapter. Additionally, this local sharing would mean collectors have nearly

immediate access to information updates than could be acted upon more readily.

 24

While having the ability to share data collected by sending files between devices,

it could prove more powerful to share data in the form of objects holding specific records

instead. For example, the application could be programmed to automatically connect to

and send data to external devices based on a specific event, as in a user has modifications

or new records to send. This “automatic” attempt to connect and share data would happen

without other actions taken by the data collector. It could be based on a specific amount

of time, for example every fifteen minutes; or it could be based on a user having made a

certain number of updates.

c. Wi-Fi Direct

A third wireless technology in growing in popularity is Wi-Fi Direct. This

technology would be the most ideal when operating in remote or unreliable networking

environments because it allows for the most distance between mobile devices that wish to

share data. This would enable a team of collectors in remote locations to share data with

one another at faster speeds, up to 250 mbps, and distances up to 200 yards (Malone

2010).

C. DEVICE INDEPENDENCE

In most cases, when applications must be changed or upgraded, software must be

re-written for each type of device on which that code is supposed to run. For example,

iOS devices cannot run code written for an Android device. Rather, the code must be re-

written and compiled specifically for iOS devices. Several software development kits

allow developers to create applications that can be run on virtually any mobile device or

laptop browser, rather than writing different software for each device. Appcelerator and

PhoneGap are two such software development kits that could be used to create the new

and improved Lighthouse Application.

As previously mentioned, the major benefit of using one of these SDKs is that the

program need only be written once. Theoretically, the code is compiled to run on any

device. In fact, the user may not be able to notice a difference in how the application runs

on an iPhone, iPad, Android tablet, or laptop web browser for that matter. The developer

could choose to make the application look and perform in the exact same manner

 25

regardless of the device, or take advantage of additional screen real estate and processing

power differences between smart phones, tablets, laptops and/or desktops.

D. PROPOSED CAPABILITIES

The next generation of Lighthouse proposes many enhancements to the current

process. One of the ideas from those meetings was to develop an application that would

access various features of the overall system with the click of a button. Each button or tab

would serve a specific function and are discussed below. Considering that most of the

software comprising the Lighthouse Project is either open-source or GOTS software, they

can be consolidated into one application. The user interface can be designed to integrate

various existing functions and improved upon.

Android developers use “Fragments” and “Activities” to create different views

and move seamlessly between different functions of an application. Each fragment can

behave as an interface for a different set of activities and serve distinct purposes. The

second generation of Lighthouse could consolidate at least eight different operations for

its users. These functions could be broken up into several tabs providing better flow and

function to Lighthouse users. Mike Stevens, manager of the CORE Lab, created some

possible screens to demonstrate the functions to be incorporated in the next Lighthouse

version, after meetings with the Lighthouse working group.

The first activity would be considered the “Home” screen. There would be several

tabs or buttons that would take the user to another activity of the user’s choosing. This

screen could look something like the screen depicted in Figure 6. This figure also depicts

the “Help” screen, which displays helpful information about the application to the user. It

could also display information about the mission requiring the information being

collected. The highlighted or bolded tab is the active screen or activity. On the home

screen, a user could select the mission by changing the settings, ultimately loading the

mission database on to the remote device. From the “Home” screen, the user has the

option to hit any of the tabs or activities that we call: “Form”, “Map”, “Visual”, “Photo

Gallery”, and “Help”.

 26

Figure 6. Possible Lighthouse “Home” and “Help” Screens 3

1. Form

By clicking on the “Form” tab, the application would display the activity that

allows users to enter new information collected. The view may be different on a mobile

phone, tablet or laptop web browser to take advantage of the larger screen real estate.

Figure 7 displays an example of the “Form” and “Map” activities.

2. Map

The “Map” tab would place drop pins on various locations on a map that

reference different records in the database. Hovering over a drop pin would display a

summary view of the information from the database that corresponds to that location.

Location data could be provided by Google Maps when network connectivity is not an

issue, but could prove impossible when there is no access to the Internet. Lack of

connectivity could cause delays or other errors when running the application as it

3 Figures 6, 7, and 8 were created by Mike Stevens of the CORE Lab after discussions with members

of the Lighthouse working group. The photo gallery was modified by Marisol Torres to show images from
http://vectorcharacters.net.

 27

attempts to update the maps. Leaflet is a free, open-source JavaScript library that could

be used to provide interactive maps for mobile devices (Leaflet 2014).

Figure 7. Possible “Form” and “Map” Screens

3. Visual

One of the applications under the umbrella of Lighthouse is a tool that can take

data of a specified format, aggregate that data and develop a link diagram. The link

diagram is not an analysis of the actual data. Rather, the tool simply scans the data and

tallies the number of times a piece of data is referenced and creates a visual

representation of the data. The “Visual” tab is one mechanism that agency leaders agree

would be needed to incentivize data collection. A collector can visually see what

information is lacking in content. Based on their mission, collectors can choose to collect

more information about those areas with only a few links, or choose to collect even more

information on an area with a large number of links.

Since current operations require Internet access to send the information to a

central database to be aggregated, reports and graphical representations of the data must

 28

be done externally and downloaded on the mobile device when completed in order for

collectors to view these diagrams. The ability for collectors and decision makers to do

this locally from any remote location would be a major improvement. Figure 8 depicts

example “Visual” and “Photo Gallery” screens. The Java Universal Network/Graph

Framework (JUNG) is a framework written in Java that could be used for graphing and

visualization on the server side and downloaded to mobile devices. MindFusion,

described later, could be used to create the visualizations directly on the mobile device.

The Photo Gallery activity would display every photo from the database. Clicking on a

photo could provide several options to the user, from displaying information about that

person, to creating new links or relationships between people.

Figure 8. Possible “Visual” and “Photo Gallery” Screens

4. Photo Gallery

The “Photo Gallery” is another capability that the working group users agreed

would be extremely beneficial. The user could have several views based on the amount of

screen real estate available. For example, on a tablet the screen could display nine or

 29

twelve photos while the maximum number of photos that appear on a mobile phone could

be four or six. A list view would show three photos with a list of details to the right of the

photo. The user could also select a view with one photo that would zoom in on the photo,

but also display the rest of the data from the database pertaining to that person. Hovering

over a photo could display a summary of the information in the database, while clicking

on a photo would take the collector to a “Baseball Card”.

5. Help / Codebook

The “Help / Codebook” screen provides the user the ability to learn more about

how the application functions. In addition to explaining useful tips for the data collector,

the codebook has definitions and explanations of terms used within the system, as well as

the commander's intent of the actual collection activity. Upon clicking on this tab, the

collector would be brought to the portion of the codebook that explains information about

the last activity. For example, if the user were in the “Photo Gallery”, hitting the “Help”

tab would display helpful information about the “Photo Gallery”. It is a continuous,

scrollable view of the entire codebook. Figure 6 displays a sample “Help / Codebook”

screen.

6. Other Capabilities

a. Baseball Card

The Baseball Card is a view that collectors could get to from the “Photo Gallery”.

This screen displays what is referred to as a baseball card because it is basically a

summary of data from the database, similar to information that one might find on an

actual baseball card of a major league baseball player. The view is a quick view for

collectors to familiarize themselves with a specific individual. Double clicking on the

photo in the gallery would take the collector to a screen displaying more information

from the database about the person selected (similar to Figure 9 below). From that screen,

the data collector could modify any of the existing data or simply scroll through the rest

of the database information about that person.

 30

Figure 9. Possible “Baseball Card” View (after Vectorcharacters 2014)

b. New Links

Working group members agreed that the ability to create new links or

relationships between people or other information within the database would be

extremely beneficial to Lighthouse collectors. Adding a relationship could be done in

several ways, but the most simple would be from the Photo Gallery. For example, a long

click on a photo could highlight a photo, placing the user in an “Add relationship” mode.

A second long click on a different photo would open another screen where the user would

enter information about the type of relationship being added. For example, it could show

a screen with the photo or name of person 1 “is a “ [kinship type] ” “of ” photo or name

of person 2, where [kinship type] is a dropdown menu from which the collector would

select the type of kinship like cousin. If the type of relationship is new, the user could add

a new one like “ conducts business with” or “purchases goods from” by selecting new

from the drop down menu.

 31

c. Export Capability

The “Export” capability is a tool that working group members thought might

make integrating with more robust social network analysis tools easier. This tool would

enable collectors to create files from database data in specific file formats. For example,

the collector could create .dot, .csv, .txt, or .xml files from the data in the local database.

They could then send these files to other users in the area via NFC, Bluetooth, or Wi-Fi

Direct. Additionally, the files could be sent to remote, external servers when Internet

connectivity is established.

d. Database Integration

Another critical piece to make integration seamless is creation of a local database

that can actually compare and share information with other local databases. This function

would prove extremely powerful. Since the current implementation creates separate

tables that do not interact with one another, all information is sent to an external,

centralized database for any and all analysis to be performed. Reports are sent back to, or

downloaded by collectors when connectivity exists. Smart phones and other mobile

devices have processing capabilities that make it possible for them to perform some

meaningful analysis locally, rather than using up valuable time and network bandwidth to

send the information over the network first.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. METHODOLOGY

The database architecture described in this chapter does not capture information

that may be required for the devices to know the authorized users or other authorized

devices with which they can communicate. Additional information, perhaps stored in

another table, is required for the mobile devices to establish the connections required to

keep their data in sync with one another and/or the main database. The specific

information required for communication depends on the communication technologies or

protocols being used. We discussed some of the considerations for Wi-Fi Direct and

Bluetooth information sharing in Chapter II, Sections B and C. We discuss two different

methods for sharing data below.

A. UPDATE USING FILE EXPORTS

When synchronizing data between multiple devices, several approaches can be

used. To explain the algorithm, we limit the number of devices to four. The algorithm,

however, is designed to work with an arbitrarily large number of devices.

SQLite databases on phones are not as robust as normal, full-featured SQL

servers. While phones can support multiple tables in an SQLite database, as well as

multiple databases on a phone, there are several limitations with mobile versions of

SQLite.

One major difference between SQLite and SQL implementations is that an

SQLite database can only store three types of data: String, long and double. Normal SQL

databases can support many different data types to include Boolean values, binary large

objects (BLOBs), variable length character strings (varchars), and several more. To

display data types not supported on SQLite, they must be converted properly and then

stored locally. They can be reverted back to the appropriate format when being sent to

other SQL databases, but that additional conversion may or may not be required. In fact,

it may prove to be inefficient to constantly change the file format, but that really just

depends on how the external database is being used and what other devices communicate

with its database directly. There are APIs that enable developers to do the file

 34

conversions with relative ease. For example, there are Java utilities that allow storage of

BLOBs in SQLite databases on phones. Those BLOBs can hold photos or other

information not normally recognizable by SQLite databases. Since SQLite databases are

loosely typed, that is, do not restrict the actual data that is entered into a field, developers

are responsible for ensuring the integrity of the database (Murach 2013). This makes it

easier to use other data types inside of SQLite databases.

 Another limitation of the SQLite databases on a mobile device is direct

connectivity to a database. The connection from one mobile device directly to an SQLite

database residing on a different mobile device is not permitted. The main reason for this

restriction is that external devices would require access to the other devices' file structure,

and permissions to access, or modify files on an external device. This capability is

intrinsically in violation of basic security protocols. Generally, no one wants external

devices to be able to connect to files on local devices, much less modify them. They may

want to be able to share a file, or obtain a file from another mobile device, but generally

do not want their own files to be modified. Developers have had to come up with creative

ways to implement this capability.

With this in mind, there are several routes that application developers can take to

make an application seem like it is synchronizing directly. In the method described here,

it does not matter which technology is used to connect and send a file. All that matters is

that a mobile device must be able to send a file to another device. Basically, any

application that attempts to store data into a local database, must also be able to send that

data to a file which would be shared with another mobile device. The next steps happen

behind the scenes and are not observed by a casual user of the device. The following

describes how four mobile devices could perform the synchronization in a background

process without regard to the connection technology.

1. Use Case

A team of four data collectors report to a village to obtain information about the

local population. There is no existing network infrastructure but the team leader did

obtain the download from the master database prior to arriving at the village. He shares

 35

the data with the other devices by using a specialized Bluetooth, NFC or Wi-Fi direct

application that places the data in a specified location on each mobile device. Again,

since complete files can be transferred via each of these methods, the specific connection

method does not really matter at this point.

A separate application is opened on each device that parses through the shared

file, creates the appropriate local tables and allows the other data collectors to query or

modify the stored data. This synchronization method uses a temporary database

containing any of the modifications the user makes to the database. If the user never

obtained the master file, he or she would still be able to collect new information. The

team leader manually sets the device clocks. The application to collect information is

started on each device by the individual collectors. Starting that collection application

triggers the synchronization application, which runs in the background so it requires no

additional action from the information collectors.

All devices in use require uniquely identifiable names and each device has the

names of other valid devices stored in local tables. The names could be the MAC

addresses of the mobile device but for our example, we will use M1, M2, M3, and M4,

respectively. Each device with data to share, or modifications to the database would

create a file using a standardized naming convention such as m2_dbname_1.csv. The first

part of the name would correspond to the actual machine name of the device that created

the file. The second part of the file name would be the database name for which the data

belongs and the last part is an index. The index would iterate from 1 to 1000 and repeat.

This is merely a precautionary measure to ensure that a device does not overwrite a

previously written file that has not yet been aggregated and properly uploaded to the

master database. The file could be a .txt, .csv, or .xml file. It really just depends on how

the file is being accessed when it is time for synchronization to occur.

This method of synchronization requires that one device is designated as the

database master. This is for simplification since true peer-to-peer systems that allow

every device to behave as a master can be extremely complex and difficult to implement.

This adds several levels of complexity to ensure that data is aggregated properly,

duplicated data is not added erroneously and multiple devices do not take multiple

 36

attempts to update the same exact data, at the same time. This algorithm avoids those

complications by establishing one as the leader or “master”. We name M1 as the device

that will actually aggregate all data collected and eventually connect to the external

database to upload all of the aggregated data.

Each device will store data in a local database as well as create a .csv file in a

specified location containing any data that has been modified or added to the database.

The new and modified records will have their modified bit set as well as the emp_id and

timestamp for either the create_dt or modified_dt. Additionally, any records that should

be deleted will have a delete flag set and record the timestamp into the modified_dt and

emp_id of the user dictating the change to be made.

When a connection is established, the master device will check the specified

location for files with the specific naming convention mentioned earlier. If there are files

matching that naming convention, it will check for a semaphore file. The semaphore is an

empty file following a similar naming convention except the file extension is .del or .ack

extension. The .del informs the device that the file was aggregated and uploaded

properly. The .ack informs the local device that a specific file can be deleted. To continue

with this example, if m2_dbname_1.del exists, M1 knows that the information has

already been aggregated. It deletes the file original .csv file but leaves the .del file as an

acknowledgement to M2 that its data were received, aggregated and uploaded to the

master database. The next time that M2 connects, if it detects an m2_dbname_1.del file, it

knows that those changes were uploaded properly and can remove those records from its

temporary database and commit those changes to its local database. M2 would then create

an acknowledgement file with the same name and .ack extension. This is a semaphore

that informs the local device that other files with the same name can be deleted. The

temporary database would still contain all of the new data that was collected between

pervious synchronization attempts.

Since we established that M1 would be the local “master” responsible for

aggregating data collected in the field, the other devices would not pull new data unless

M1 specified that new data exists. So, if no device has changes to be made, no files will

be created or shared. However, if there were a change, M1 would inform its peers that a

 37

database update exists after a specified amount of time or drop the most current version

of data into the appropriate local location at the touch of a button. When those devices

want to obtain updated data, they would only obtain actual updates from M1. Although

they would still obtain copies of every device’s .csv, .ack and .del files, they would not

actually use any of the data in those files. Those files are simply replicated to ensure that

M1 could obtain M3’s update from M2 or M4 in the even that M3 could not establish a

connection to M1 directly. This method prevents loss of data in the event that network

connectivity is nonexistent.

This method is not very different than the current implementation of Lighthouse

in that updated information is gathered and used to generate reports that are stored on the

mobile device. These files are stored in an “outbox” for use when connectivity is not an

issue. So, when there exists a connection to the Internet, the “outbox” transmits the

messages that have not been sent.

This is not truly a departure from current operations. The only benefit of this

capability would be that users could share their information with one another so that in

the event that one of their devices is compromised or lost, the information collected on

that device is not lost. Rather, it is on another, local mobile device that can send the files

to the cloud when connectivity is restored. While useful, this extension has limited

benefit.

It is more useful to provide this capability as an important adjustment is made to

the application's current capability. The current application must include a reader that can

parse through the files sent by other users and stores the information in each device's own

local database. Additionally, the new generation would have to support additional

capabilities such as visualization and photo gallery search to be truly useful. This would

mean the collectors could potentially benefit from the information that was collected by

others. Absent these, the data would still need to be uploaded to the cloud for

exploitation.

 38

B. DATABASE SYNCHRONIZATION

If we want the information collected by users to be shared between collectors

more readily so that the information could be used by the collectors on the ground, the

previously described implementation would not be enough.

In the following approach, instead of storing and sending actual files, we share

individual objects or records. In order for this approach to work, there are several key

requirements that need to be satisfied.

The first requirement is that the system uses one of the three communications

mechanisms described in Chapter III, Section B2. Each of these connection mechanisms

has specific requirements in order to share data. Bluetooth requires MAC addresses while

Wi-Fi Direct requires IP address. These details are not critical for this research since IP

addresses can be assigned by group leaders upon creation of a group. At a minimum, all

devices must know the device name and MAC address of all devices to which it must

send information. Although this is not a requirement when using Bluetooth technology,

as mobile devices truly need not know to whom they wish to connect in advance. This is

a requirement since developers and users wish to limit information leaks to unauthorized

devices. This acts as an access list, storing specific information that would make

connecting to a device more rapid. Other information would be stored to ensure

synchronization functions are executed properly.

1. Data Sharing Algorithm

The algorithm below describes an implementation that would work for sharing

data. It would ensure that new and modified data is only sent to other devices when

certain conditions exist, preventing unnecessary traffic. Additionally, it prevents against

out of sync databases by attempting to send updates at least a specific number of times

(three in our case) unless it receives an acknowledgement that data was successfully

received.

When a device has data to send, it starts counting from zero. It uses a sent and ack

array to keep track of which devices have yet to receive the data. If the sent flag is 0, the

device will attempt to send the data and set the sent flag to one after the data has been

 39

successfully sent. If the sent flag is 1, it moves on to the next device awaiting the data.

After going through each device in the device list, it resets the sent array, increments the

number of attempts and starts going through the device list again. After the third attempt

to send, no further attempts to send that data are made. Pseudo code for the algorithm is

provided below.

Each device will perform the following steps to send:
Step 1. Create devList = DL[] - DL[i] ; local_device = DL[i];
Step 2. Initialize arrays and variables:
 n= | DL[] |;
 senti[] = 0;
 acki[] = 0;
 reci[] = 0;
 attempts = 0;
 maxTimes = 3;
Step 3. Gather data to send:
 DATA = getData() {
 check messages table {
 if old messages still unsent, re-send
 }
 results = query() ; //select * from table where modified == “Y”;
 if (results == null or “ “) {
 EXIT // do not continue; wait until there is something to send
 }
 else {
 mId = getMessageID(); // get next available message id
 return newData = DL[i] + “, “ mId + “: “ results ;
 }
 } // end of getData()
Step 4. While (attempts < maxTimes) {
 for (i in devList) {
 if (ack[i] != 1) {
 if (sent[i] == 0) {
 sendData(devList[i], DATA) {
 **here, i is the destination.
 **DATA contains the source, mId and data updates
 };
 sent[i] = 1;
 } // end sent[i] check
 } // end if ack[i] check
 next i;
 } // end for-dev loop
 attempts++;

 40

 } // end while

2. Receiving Data Algorithm

The algorithm below describes an implementation that would be used when

receiving data from an authorized device. It would store the data received in its local

SQLite database and respond with an acknowledgement to the sender. The sent and ack

arrays maintain the statuses of the sent and ack flags respectively and are the same arrays

mentioned in the sharing algorithm. The acknowledgement is an effort to prevent

unnecessary re-transmission of data. When a device has received data from an external

device, the device sends an ack containing the message ID to the sender of that message.

Upon receipt of an ack, the message sender sets the ack flag and no longer attempts to

send that message to the device for which the ack was received. Pseudo code for the

receiving algorithm is provided below.

Each device will perform the following steps when receiving data:
Recall from earlier that Di[] = DL[] - DL[i]
Step 1. RECEIVED = recData() {
 source = DATA[0]; m_Id = DATA[1]; newData = DATA[3];
 determine message type
 if type == ack ,
 return ack
 else newData == (string of records;
 comma separated columns;
 records separated by \n)
 return newData;
 }; // What was received -- (ack or newData)
Step 2. idx = getIndex(); // get position in array for device that sent the data
Step 3. switch (RECEIVED)
 {
 case “ack” :
 ackidx[devList[idx]] = 1
 break;
 default :
 updateLocalDB() {
 update = sql code that enters information received into local database
 if record already exists, check create_date and modified_date
 save the newer record;
 if questionable, save to error table.
 set success to true if update successful, else success = false

 41

 };
 if (success) {
 sendAck(devList[idx], m_Id) {
 send from my_device to devList[idx]
 --- dev, mId stored
 };
 }
 };

3. Algorithm Walk-Thru

As one reviews the algorithm, one should notice that it does not specify a specific

action that triggers or starts the sharing. This was done intentionally. The trigger could be

based on time, a certain number of changes or new records added to the local database, a

button pressed by the user, or other action specified by the developers or decision makers.

Additionally, this research focused on an algorithm that would be as generic as possible

so the method of connectivity (Wi-Fi Direct, Bluetooth, WAN, LAN, etc.) was not

important either.

As an example, the data sharing and receiving programs can be separate activities

triggered by loading a data collection form. These activities can be separate applications,

or part of the data collection application. In this mode, these would be running in the

background requiring no action from the data collector.

As mentioned previously, after a certain amount of time, or after collecting a

certain amount of records, the sharing program verifies that there is data that to be shared.

It tracks whether data needs to be sent by checking the sent and ack arrays. This is not the

only way this algorithm could work. It could also use a separate message table that holds

the message IDs of all messages sent and received. Rather than checking the position in

the sent and ack arrays, it would check the field within the message table corresponding

to the device. If the ack for a message ID for a specific device is not received, it

retransmits that message to the specific device. In either case, this is what occurs in the

Prep DATA portion of the flowchart. It will start the attempt count and send data if an

ack has not yet been received. Upon sending data, it will set the sent flag corresponding

to destination device. Otherwise, it will move on to the next device in the device list until

it has gone through all of the devices in the device list.

 42

Figure 10. Sharing Data Flowchart

The receiving flowchart below depicts the actions taken by the receive listener.

The listener will begin running on the mobile device upon start up of the collection form.

As in the previous explanation, there is no special action required of the user to start the

listener. This program is running in the background unbeknownst to the user and does not

inhibit the users’ ability to enter new data in any way.

The device is listening for messages from any of the devices in its device list

array. When it receives a message, it checks the source of the message. The sharing

program uses this information to identify the index in the array that will be modified.

Then, it starts to parse the message received to verify if the message is actual data or an

acknowledgement. If it is an acknowledgement, the index for the source device in the ack

array is set to 1 and the device goes back to listening for data.

If the message is an actual message, it is parsed and the local database is updated.

 43

Figure 11. Receiving Data Flowchart

4. Implementation

The prototype developed for this demonstration was created using a free Android

Open Source Project Bluetooth Chat Application found on GitHub.4 The code was

modified using the Android Developer Tools Build: v22.6.2-1085508, which includes the

Eclipse Platform. The application was tested on Android devices with API Level 15 (Ice

Cream Sandwich) or higher. This was to ensure stability and consistency of the

application while using the local SQLite database and Bluetooth technology

simultaneously, as well as ensuring compatibility within Eclipse.

The discussion below walks through the above algorithm and shows three

devices. Table 1 lists the devices used, their device names, operating systems and

database version.

4 According to GitHub.com, their website was founded by Tom Preston-Werner, Chris Wanstrath, and

PJ Heyett and is one of the most popular code hosting/sharing websites in use.

 44

DEVICE # DEVICE NAME TYPE DESC Database
1 NPS5 GT-19300 Android v4.03 SQLite
2 NPS1 Nexus 7 Android v4.03 SQLite
3 Galaxy Nexus Galaxy Nexus Android v4.03 SQLite

Table 1. List of Devices Tested

The application starts off by checking whether Bluetooth is on or off. If it is off,

the user is prompted to turn on Bluetooth as depicted by the Program Action Sequence in

Figures 12, 13 and 14.

Figure 12. Start of Program Action Sequence of NPS5

If Bluetooth is on, it opens the data entry form with example text so the user

knows the correct format of each field. This application forces the user to scan for

devices manually, however, this capability can be programmed to execute in the

background. The intent is for the device to make connections automatically in the

background without requiring any action by the collector. In this way, the collector would

 45

simply continue to collect data, without having the additional burden of sharing the

information, or verifying that data is being shared. This application forces the actions to

be done manually in order to demonstrate the different actions that take place to establish

a connection with nearby data collectors.

The prototype discussed here does not trigger the algorithm described. Rather, it

simulates similar actions. For example, it forces the user to manually connect to an

external device prior to entering any records into the database. In actuality, the

connections need not be established upon startup of the application. This was a design

choice to maintain the chat functionality. The interface allows the user to enter one

record. When the user hits the compile button, the data is prepared for sending. The user

reviews the information being sent at the bottom of the screen and must hit the send

button to send the data. If for any reason the connection to the external device is lost, the

user must re-establish connectivity prior to sending any data. On the receiving end, the

received message is stored in the device's local database. All of the required actions occur

manually in this prototype. The actual application would run behind the scenes.

Figure 13. Steps 3 and 4 of NPS5

 46

Figure 14. Final Step of NPS5

Stepping through the program action sequence above, we see the various screens

seen by a user, NPS5, who is already connected to an external device, NPS1. Data is

entered into the collection form, compiled, displayed at the bottom of the screen and sent

to the external device. After hitting the send button, the information is entered into the

local SQLite database and sent to the external device.

Figure 15 and 16 shows the screens viewed by NPS1. Starting from the top left,

we see that this tablet is connected to an external device named NPS5. The screen on the

top right shows that it received data from NPS5 and displays the information received.

There is no photograph of the message stating that the information has been stored onto

this device's local SQLite database because even with a long toast message, I was not

able to perform the screen capture quickly enough.

 47

Figure 15. Start of Program Action Sequence for NPS1

In order to demonstrate that data is sent in both directions, next, NPS1 enters

information on the top of Figure 16 and reviews it on the bottom of the tablet after hitting

the “Compile Data” button. Upon hitting the send button, we see the updated screen with

both records displayed in the photo to the bottom of Figure 16.

 48

Figure 16. Screens 3 and 4 of NPS1

Figure 17 shows the event as seen by the NPS5 device.

 49

Figure 17. NPS5 screen after receiving data from NPS1

After the NPS5 has finished sharing its information with NPS1, it checks its

device list to see if there are other devices that still require the information. The device

executes the algorithm once again to share with a third device called Galaxy Nexus.

Figures 18 through 22 show the program sequence for NPS5 sharing its data with the

third device, Galaxy Nexus. Again, although the prototype shares one record at a time,

the actual application would execute a query to obtain all of the updated or new records

and send all the records to the next device at the same time. The receiving device would

parse through the message received and update its local database.

 50

Figure 18. NPS5 sharing data with Galaxy Nexus

Figure 19. NPS5 receiving data from Galaxy Nexus

 51

Figure 20. NPS5 after inserting data from Galaxy Nexus

Figure 21. Galaxy Nexus sharing data with NPS5

 52

Figure 22. Galaxy Nexus after sharing data with NPS5

At this point, NPS5 has shared all of its information with the other two devices

that required its updates. Next, the second and third devices would make the required

connections to share their respective data. Figures 23 through 25 depict the actions taken

by NPS1 and Galaxy Nexus in order to share their data from the Galaxy Nexus

perspective. Figures 26 through 28 show the same actions from the NPS1 perspective.

 53

Figure 23. Galaxy Nexus sharing data with NPS1

Figure 24. Galaxy Nexus after sending data to NPS1

 54

Figure 25. Galaxy Nexus after receiving data from NPS1

Figure 26. NPS1 receiving data from Galaxy Nexus

 55

Figure 27. NPS1 sending data to Galaxy Nexus

Figure 28. NPS1 after sharing data with Galaxy Nexus

 56

After this iteration of the algorithm, the databases on all three devices have all

three records that needed to be shared. To show that all the records are on each device, a

separate database reader was used to display the records of the database. Figures 29, 30,

and 31 show the entries in each local database.

Figure 29. NPS5 Database Records

 57

Figure 30. NPS1 Database Records

Figure 31. Galaxy Nexus Database Records

 58

C. DATABASE STRUCTURE

Figure 32 depicts a sample database structure for a centralized database. Its

format is slightly different from the SQLite database on a mobile device.

Figure 32. Sample SQLite Data Structure

I
:ononT.t~•

ITU! TVPI!

-· ·-
M- ·-
~ -·-·-E. ·-·-~-"""

~- '~'> .. \1l!dlll!(l)

eoot,.dl ""'
roo~~_id \~6)

r

1 OI:SC
\.."-'4\IIC p.-..y key \)ogl11) ol
m.lllf ~
llll!flbef eppc'lldtd 10 n
ut~~ly l.kMRec. Ik-e.

t..t! 111mc1 of _. .. id~l "'tloM
IMiltWWioft h llfirw ~

,_ MIM O(illdiv!dllll•"-

in~ilki!IJ oolm;d_

O..o~mmptl'eii.C'Id

t."MMIID of~ wl-q ~lo41hc _.
,_ ~ bubem modlilicd
Jinc:o J!UIIoolti'om ca1n1 ~

O..C:.~ Nn'IP oi..-riC'IIIior!

l:teft:D otU ~ IOCII!ie 0..

n'PE Df.SC
~6) l.·,.;q:;xm.--..r&..~...!b!ll

IIUn.b el .._..,. ..

·~·-- -..boc.q.IO idcntd)~
~) Lilli_.,.__ ~
~> rll'lii-J* . coa-..
ON o..t 1iii!IQ • ~-lddcldiO ---

hriCiiDiil
mu

TT>£ """ --· __ ...
-----· --·

~,_....,......._,_.~ .. _
~ l)prfll ~_w. __
~~_, 6tW. ... ~,...
....-:~ t.a~%~11 ,aw •hi aalallk 11!11111!1

~l>bk Ul TYtll
DESC =l • Y11thll(10) r-iptey ·~ ,._
~C!Mdlla-

c:_ .. """' ft.olool~ ~ lhe fC'"MJd.

..... ... _ _ J
r-· \'-1111(6) ~o or~""'-» Cftllll:d the' ICCOfll!

 59

1. Sample Local SQLite Database Tables

The tables below represent data descriptions of possible SQLite database tables

for the prototype created. These can be exactly the same as the external or centralized

database, with minor differences in the data types of the fields. All tables in the central

database need not be represented in the tables on the local devices and vice versa. That is,

only required fields need to be referenced. This saves space on the mobile devices and

improves processing times because developers need not allocate space and resources for

unused data.

TITLE TYPE DESC
emp_id text Unique ID consisting of first and last initials of information

collector with 4 digits appended to end. Must be unique to
identify individual collector.

lname text Last name of information collector.
fname text First name of information collector.
create_dt number Date information collector was added to employee table.

Table 2. Emp Table

TITLE TYPE DESC
person_id text Unique primary key. UserID of creator with pseudorandom

number appended to it that uniquely identifies the record.
lname text Last name of individual whose information is being collected.
fname text First name of individual whose information is being collected.
gender text One character field representing the gender of the person.
dob number Six digit number representing the date of birth of the

individual.
create_dt number Twelve digit number representing the Date/time stamp when

record was created.
creator_id text UserID of person who created the record
modified text Y or N indicating whether record has been modified since

pulled from central database.
modified_dt number Twelve digit number representing the Date/time stamp of

modification to existing record.
modified_id text UserID of last person to edit the record

Table 3. Sample Person Table

 60

TITLE TYPE DESC
person_id text Foreign key indicating person described by this data.
data_field text Type of data belonging to person_id. Ex cell_phone
value_field text Value of the data field. Ex. 8453452314
create_dt number Date photo stored in table
creator_id text UserID of person who created the record

Table 4. Sample Person Data Table

TITLE TYPE DESC
person_id text Foreign key indicating person described by this data.
photo blob Photo of person matching the person_id.
create_dt number Date photo stored in table
creator_id text UserID of person who created the record

Table 5. Sample Photo Table

2. Sample Database Creation Script

// create emp table
// This table holds administrative data pertaining to the information collectors.
// The emp_id identifies information collector
// that either created or modified a record in the database.

CREATE TABLE EmpTable (
 emp_id VARCHAR2(6) NOT NULL CONSTRAINT EmpTable_pk PRIMARY KEY,
 lname VARCHAR2(30),
 fname VARCHAR2(30),
 create_dt DATE
);

// create person table. This table contains data collected by employees.
CREATE TABLE PersonTable (
 person_id VARCHAR2(30) NOT NULL CONSTRAINT PersonTable_pk PRIMARY KEY
UNIQUE,
 lname VARCHAR2(30),
 fname VARCHAR2(30),
 dob VARCHAR2(30),
 gender
 create_dt DATE,
 creator_id VARCHAR2(6),
 modified VARCHAR2(1),
 modified_dt DATE,
 modified_id VARCHAR2(6)
);

 61

// create person data table
// This tables holds fields relating to corresponding person_id in PersonTable.
// These are data fields that a person could have more than one such as phone number, vehicle, cousin, sister,
etc.
// Storing this data in a separate table prevents from having to add new columns to any table in the database.
CREATE TABLE PersonData (
 person_id VARCHAR2(30) NOT NULL CONSTRAINT PersonData_fk FOREIGN KEY,
 data_field VARCHAR2(30),
 value)field VARCHAR2(30),
 create_dt DATE,
 creator_id VARCHAR2(6)
);

// create photo table
// This table can hold multiple photos of a specific person. Using a separate table enables us to store multiple
photos.
CREATE TABLE PhotoTable (
 person_id VARCHAR2(30) NOT NULL CONSTRAINT PhotoTable_fk FOREIGN KEY,
 photo BLOB,
 create_dt DATE,
 creator_id VARCHAR2(6)
);

3. Chapter Summary

When examining the sample SQL scripts, screen captures and algorithms

described in this chapter, one must recognize that subtle changes must be made to tie all

of the pieces of this project together.

The queries are for creating the actual centralized database rather than the code

for creating the database on the local device. The local database on the local device was

created using a datatable.java file within the android application. That code is not

displayed because it varies depending on the SDKs and API being used. Personal

preferences of developers play a significant role in how those tables are created as well.

As mentioned at the start of this chapter, the database architecture described in

this chapter does not capture information that may be required for the devices to know

the authorized users or other authorized devices with which they can communicate. Since

the information required for communication varies with the communication technology

or protocol being used, this focused on an algorithm that does not require a specific

technology. The prototype discussed demonstrates how sharing data between mobile

devices can be implemented.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

V. CONCLUSIONS

A. MAJOR ACHIEVEMENTS

The goal of this research was to identify and outline improvements that could be

made to the current Lighthouse Suite of applications, specifically in how information

could be shared among mobile devices in remote or challenged networking environments.

To this end, research was done to identify challenges to implementing the recommended

improvements and recommendations about which technologies could be levied in order

to make sharing data in these environments more robust and transparent to the data

collectors.

The research described the various products within the current suite of

applications and how some of those products could be consolidated to provide better

fidelity, improve sharing time, and possibly cut down on the overall analysis time. The

most significant contribution of this research is an algorithm for database synchronization

that would ensure data synchronization among devices on a local network, even when

connectivity to cloud or Internet services is not available.

It involved the modification of an existing Android application created for

Bluetooth Chat that allows a collector to store new information in their local database and

share that information with known users within Bluetooth range. Although this prototype

is fairly simplistic, it demonstrates that data collectors can collect data in these remote

areas and share that data with other users of the system, without requiring actual Internet

connectivity. Additionally, it walks through the algorithm and prototype to show that

both function correctly and identifies areas that could be improved.

B. FUTURE WORK

1. Seamlessness

This solution used multiple applications in order to demonstrate a small portion of

the capabilities required for the next generation of Lighthouse. Developing the entire

application is a large task, requiring several engineers. A team of developers would be

 64

required for each piece of Lighthouse to be developed in a timely fashion. Additionally,

for users to move properly from one activity to another, developers must be able to focus

on specific aspects of the program. Modularity in the development of the application

would allow experts in specific areas to focus on their piece of the puzzle. For example,

some developers may have more expertise in map development or database management,

while another may be more proficient in the visualization APIs.

2. Connectivity

Lighthouse can continue to be improved in a number of ways. This solution was

developed using Bluetooth technology. More research needs to be done using Wi-Fi

Direct as a means of connectivity instead. Wi-Fi Direct could mean that collectors could

share information at greater distances. This capability is more powerful than the

Bluetooth solution, not just because of the greater distance, but because the capacity to

maintain constant connections between multiple devices is greater when using the Wi-Fi

Direct technology.

Additionally, data could be broadcasted to all devices simultaneously using local

IP addresses assigned to each device when connectivity is requested, rather than the

pairwise sharing used with Bluetooth connectivity. This would improve the overall

synchronization time as well.

3. Off-line Maps

According to their website, Leaflet is a JavaScript Library used to create

interactive, mobile device “friendly” maps. It is an open source library located on GitHub

developed by Vladimir Agafonkin and other “contributors” (Leaflet 2014). While

GoogleMaps could be used when Internet connectivity exists, it is extremely difficult to

use without connectivity. The beauty of Leaflet is the Lighthouse developers would have

total control over the map tiles used. The appropriate map tiles could be loaded onto the

mobile devices when loading the “mission” data. Additionally, the application could

access the appropriate map tiles even without connectivity to the Internet. Figure 33

depicts a sample Leaflet map view with a blue drop pin in the center.

 65

Figure 33. Sample Map View Using Leaflet (from Leaflet 2014)

4. Data Visualization

MindFusion Diagramming Library for Android is an Android Java Class Library

that developers can use for providing a means for their users to visualize data. The API

enables users to view graphs, flowcharts, genealogy trees and more (Mindfusion 2014).

Figure 34 shows two possible views that would prove helpful to Lighthouse data

collectors, depending on the goals of the collectors. The ability to create these views

would enhance operations because decisions could be made regarding collection

priorities at the local site rather than sending the data to a central database via the Internet

and awaiting results of the analysis. This functionality would decrease the amount of time

it takes for leaders at the remote site to obtain mission critical information, enhancing

decision making capabilities.

 66

Figure 34. Sample Link and Tree Diagram (from MindFusion 2014)

5. Device Independence

The original idea was to create the application using PhoneGap in order to

develop a device independent application that could incorporate several tools used in

Lighthouse. PhoneGap allows developers to use HTML5 and JavaScript for creating

device independent applications. Basically, the same code is used for desktop or laptop

web browser, iOS device, or Android device. The prototype was scaled down after

multiple challenges experienced due to the learning curve and shortened timeline. Using

HTML5, it proved difficult to access the local device's file system. This made working

with the local SQLite database a challenge. However, if having the data stored in an

actual SQLite database is not critical, the data storage could be handled using either

WebDB or IndexedDB.

More research is required to test the capabilities of PhoneGap. Additional

capabilities are being added to the PhoneGap libraries that enable access to specific

sensors on mobile devices. If the APIs that enable access to the mobile device's Wi-Fi

adapter are robust, a Wi-Fi Direct solution for connectivity could be developed. Using

 67

this, one would not have to use the local SQLite database of the mobile device. Instead,

the developer would use either WebDB or IndexedDB. In either case, sharing or sending

data to an external server is fairly trivial using HTML5.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

LIST OF REFERENCES

Bluetooth. 2014. “Fast Facts.” Accessed June 3. http://www.bluetooth.com/Pages/Fast-
Facts.aspx.

Honeggar, Barbara. 2014. “Student-Developed Smart Phone App Maps the ‘Human
Terrain.’ ” Last updated June 4. http://www.nps.edu/About/News/Student-
Developed-Smart-Phone-App-Maps-the-Human-Terrain.html.iTunes. 2014a.
“UML Diagrams.” Accessed June 3. http://www.uml-diagrams.org/apple-itunes-
uml-deployment-diagram-example.html.

iTunes. 2014b. “iTunes Store.” Accessed June 3.
http://www.apple.com/itunes/features/#store.

Leaflet. 2014. “An Open-Source JavaScript Library for Mobile-Friendly Interactive
Maps.” Accessed June 3. http://leafletjs.com.

Long, Shitian. 2011. “Database Synchronization Between Devices.” Master’s thesis,
KTH Royal Institute of Technology.

Longley, Carrick. 2010a. “Field Information Support Tool.” Master’s thesis, Naval
Postgraduate School.

Longley, Carrick. 2010b. “Student-Developed Smart Phone App Maps the ‘Human
Terrain.’ ” May 2. http://lhproject.info/student-developed-smart-phone-app-maps-
the-human-terrain.

Longley, Carrick. 2011. “Becoming Familiar with the Portal.” December 18.
http://lhproject.info/becoming-familiar-with-the-portal/.

Longley, Carrick. 2012a. “The Geospatial Visualization ‘Easy Button’ - Google Fusion
Tables.” January 19. http://lhproject.info/the-geospatial-visualization-easy-button-
google-fusion-tables/.

Longley, Carrick. 2012b. “Lab 6: Dynamic Network Analysis.” January 6.
http://lhproject.info/lab-6-dynamic-network-analysis.

Malone, Aemon. 2010. “Wi-Fi Direct Mimics Bluetooth but with Faster Speed, Longer
Range.” October 25. http://www.digitaltrends.com/computing/wi-fi-direct-
mimics-bluetooth-but-with-faster-speed-longer-range/#!OpE7F.

MindFusion. 2014. “Diagramming for Android.” Accessed June 3.
http://www.mindfusion.eu/droid-diagram.html.

MobiForms. 2014. “The MobiForms Sync Server Architecture.” Accessed June 3.
http://www.aspnet.plus.com/mobiforms/mobile_sync_server.htm.

 70

Murach, Joel. 2013. Murach’s Android Programming. Fresno, CA: Mike Murach &
Associates.

NFC Forum. 2014. “About the Technology.” Accessed June 3. http://nfc-forum.org/what-
is-nfc/about-the-technology.

Nori, Anil K. 2007. “Mobile and Embedded Databases.” In Proc. of ACM International
Conference on Management of Data, 1175–1177.

ODK. 2014a. “About.” Accessed June 3. http://opendatakit.org/about/.

ODK. 2014b. “Aggregate.” Accessed June 3. http://opendatakit.org/use/aggregate.

Oracle. 2014. “ Java Message System Tutorial.” Accessed June 3.
http://docs.oracle.com/javaee/1.3/jms/tutorial/1_3_1-fcs.

Terry, Douglas B. 2008. Replicated Data Management for Mobile Computing. San
Rafael, CA: Morgan & Claypool.

U.S. Army Human Terrain System. 2014. “History of the Human Terrain System.” Last
updated April 22. http://humanterrainsystem.army.mil/history.html.

Vectorcharacters. 2014. “Vector Characters.” Accessed June 3.
http://vectorcharacters.ne.t

Wikipedia. 2014a. “Human Terrain System.” Last modified May 26.
http://en/wikipedia.org/wiki/Human_Terrain_System.

Wikipedia. 2014b. “Automated Teller Machine.” Last modified May 30.
http://en.wikipedia.org/wiki/Automated_teller_machine.

Wikipedia. 2014c. “Java Message Service.” Last modified June 2.
http://en.wikipedia.org/wiki/Java_Message_Service.

 71

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

